Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediammonium tetrachloridocobaltate(II)

Russell G. Baughman, ${ }^{\text {a }}$ * Rebecca S. Shane ${ }^{\text {b }}$ and James M. McCormick ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Truman State University, Kirksville, MO 63501-4221, USA, and ${ }^{\text {b }}$ Department of Physics, Washington University, St Louis, MO 63130, USA Correspondence e-mail: baughman@truman.edu

Received 28 October 2010; accepted 22 November 2010

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.035 ; w R$ factor $=0.097$; data-to-parameter ratio $=18.3$.

The asymmetric unit of the title compound, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}\right]\left[\mathrm{CoCl}_{4}\right]$, contains a tetrachloridocobaltate(II) dianion and two halves of two centrosymmetric, crystallographically-independent, dications. One independent dication is disordered between two conformations in a 0.784 (13):0.216 (13) ratio. In the crystal, intermolecular N $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds link cations and anions into chains propagated in [0 $\overline{1} 1]$. These hydrogen bonds contribute to the distorted tetrahedral geometry at the $\mathrm{Co}^{\mathrm{II}}$ atom.

Related literature

The synthesis of the title compound was modified from that of Szafran et al. (1998). Related tetramethylethylenediammonium salts are listed in the Cambridge Structural Database (Allen, 2002).

Experimental

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right)\left[\mathrm{CoCl}_{4}\right]$

$$
\begin{aligned}
& a=6.9179(3) \AA \\
& b=8.2866(3) \AA \\
& c=13.4395(5) \AA
\end{aligned}
$$

α	$=72.188(3)^{\circ}$
β	$=87.292(3)^{\circ}$
γ	$=69.045(3)^{\circ}$
V	$=683.31(5) \AA^{3}$
Z	$=2$

Data collection
Bruker P4 diffractometer
Absorption correction: integration
(XSHELL; Bruker, 1999)
$T_{\text {min }}=0.378, T_{\text {max }}=0.553$
3003 measured reflections
2361 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.097$
$S=1.08$
2361 reflections

Mo $K \alpha$ radiation
$\mu=2.00 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.55 \times 0.44 \times 0.38 \mathrm{~mm}$

2207 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
3 standard reflections every 100 reflections intensity decay: 3.8%

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{Cl} 1$	$2.2500(8)$	$\mathrm{Co} 1-\mathrm{Cl} 3$	$2.2686(8)$
$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.2980(7)$	$\mathrm{Co} 1-\mathrm{Cl} 4$	$2.2615(8)$
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 4$	$115.50(4)$	$\mathrm{Cl} 2-\mathrm{Co} 1-\mathrm{Cl} 3$	$107.06(3)$
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 2$	$106.29(4)$	$\mathrm{Cl} 2-\mathrm{Co} 1-\mathrm{Cl} 4$	$112.81(3)$
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 3$	$106.99(4)$	$\mathrm{Cl} 3-\mathrm{Co} 1-\mathrm{Cl} 4$	$107.76(3)$

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 A-\mathrm{H} 1 A D \cdots \mathrm{Cl} 2$	0.91	2.31	$3.170(2)$	157
$\mathrm{~N} 1 B-\mathrm{H} 1 B D \cdots \mathrm{Cl} 3$	0.91	2.37	$3.222(3)$	155

Data collection: XSCANS (Bruker, 1996); cell refinement: $X S C A N S$; data reduction: XSCANS; program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC and SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2786).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Szafran, Z., Pike, R. M. \& Singh, M. M. (1998). Microscale Inorganic Chemistry: A Comprehensive Laboratory Experience, pp. 239-243. New York: John Wiley \& Sons.

supplementary materials

Acta Cryst. (2011). E67, m1 [doi:10.1107/S1600536810048749]

$N, N, N^{\prime}, N^{\prime}$-Tetramethylethylenediammonium tetrachloridocobaltate(II)

R. G. Baughman, R. S. Shane and J. M. McCormick

Comment

During the evaluation of the generality of the procedure of Szafran, Pike, and Singh (1998) for Truman State University's inorganic chemistry course, the title compound, $N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediammonium (TMED) tetrachlorocobaltate(II), (I), was the unexpected product. A cobalt(III)-TMED complex had been anticipated. A search of the Cambridge Structural Database (v. 5.31; Allen, 2002) for TMED and TMED-related salts yielded 82 results (from monoatomic to complex anions); the structure of the $\left[\mathrm{CoCl}_{4}\right]^{2-}$ salt has not been reported, and thus was deemed appropriate for determination.

Two different halves ("A" \& "B" suffixes) of the cation are present in the asymmetric unit. The $\mathrm{N} / \mathrm{C} / \mathrm{C} / \mathrm{N}$ sections of each cation are planar causing each half to be related to its partner half via a center of inversion in the middle of the cation. Evidence for different conformations of the "A" versus "B" TMED cations include the different methyl C distances from the respective $\mathrm{N} / \mathrm{C} / \mathrm{C} / \mathrm{N}$ least-squares plane. The more distant methyl C atoms (C 1 A and C 1 B) are 1.313 (6) \AA and 1.191 (4) \AA, respectively, from their planes. Similarly, C2A and C2B are -0.419 (7) \AA and -0.25 (1) \AA, respectively, from their planes. Additionally, magnitudes of the corresponding torsion angles involving the methyls are somewhat comparable, but not equal.

The N atoms in the TMEDs shown in Fig. 1 are not symmetrically disposed about the $\left[\mathrm{CoCl}_{4}\right]^{2-}$. The $\mathrm{Co} 1 \cdots \mathrm{~N} 1 \mathrm{~A}$ and Col $\cdots \mathrm{N} 1 \mathrm{AA}(=\mathrm{N} 1 \mathrm{~A}$ at $1-x, 1-y,-z)$ distances are comparable [4.720(2) \AA and 4.808 (2) \AA, respectively], while the $\mathrm{Co} 1 \cdots \mathrm{~N} 1 \mathrm{~B}$ and $\mathrm{Col} \cdots \mathrm{N} 1 \mathrm{BA}(=\mathrm{N} 1 \mathrm{~B}$ at $1-x,-y, 1-z$) are quite different [4.143 (2) \AA and 5.083 (2) \AA, respectively] not only from each other, but also from the "A" TMED Co1 $\cdots \mathrm{N}$ distances.

Examination of the bond lengths and angles reveals numerous significant (\backslash geq 3σ) differences between the "A" and "B" TMED cations. The "B" TMED exhibits disorder [0.784 (13); 0.216 (13)]. In both TMED cations the E conformation (likely due to the preference of dipoles within a molecule to oppose each other) of the methyls, nitrogen, and the amine H atoms shown in Fig. 1 contributes greatly not only to the presence of a center of inversion, but also to the one-dimensional hydrogen bonding present along [0-11].

A highly distorted tetrahedral geometry is present around the Co ($c f$. the six different $\mathrm{Cl}-\mathrm{Co}-\mathrm{Cl}$ angle values and four distances in Table 1). The ranges of distance and angle values are, respectively, $0.048 \AA$ ($\backslash \operatorname{sim} 64 \sigma$) and $9.21^{\circ}(\sim 230 \sigma)$. Two of the Cl 's in the $\left[\mathrm{CoCl}_{4}\right]^{2-}$ moiety are involved in hydrogen bonding with amine H 's in either the asymmetric unit or symmetry-related amine H's (Table 2). In both " A " and " B " cations, short ($\sim 2.3 \AA$) H-bond distances are noted for each hydrogen and are shown in Fig. 1. The strong hydrogen bonds (H 1 AD and H 1 BD with Cl 2 and Cl 3 , respectively) are concomitant with the long $\mathrm{Co} 1-\mathrm{Cl} 2$ and $\mathrm{Co} 1-\mathrm{Cl} 3$ bond lengths. These interactions are undoubtedly the underlying cause of the severely distorted geometry of the $\left[\mathrm{CoCl}_{4}\right]^{2-}$ anion.

supplementary materials

Experimental

The title compound was synthesized using a method parallel to that of Szafran, Pike, and Singh (1998) for the trans-dichloro bis- ethylenediamine cobalt(III) chloride using $\mathrm{CoCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ and TMED for this work.

Refinement

Approximate positions of the amine H's (H1AD \& H1BD) and most of the methyl and methylene H's were first obtained from a difference map, then placed into idealized positions ($\mathrm{C}-\mathrm{H} 0.96-0.97 \AA$; $\mathrm{N}-\mathrm{H} 0.91 \AA$), and refined as riding, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}$ of the parent atom.

In the final stages of refinement five reflections with very small or negative F_{o} 's were deemed to be in high disagreement with their F_{c} 's and were eliminated from final refinement.

Figures

Fig. 1. View of the title compound (asymmetric unit plus inversion-related pairs of both TMEDs) showing the atomic labeling [symmetry codes: (a; left TMED) $1-\mathrm{x}, 1-\mathrm{y}$, -z; (b; right TMED) 1-x, $-\mathrm{y}, 1-\mathrm{z}]$. Only the major conformation of the disordered TMED cation is shown. Displacement ellipsoids are shown at 50% probability level. Amine H atoms involved in significant hydrogen bonding (dashed lines) are drawn as small spheres of arbitrary radius.

N, N, N^{1}, N^{1}-Tetramethylethylenediammonium tetrachloridocobaltate(II)

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right)\left[\mathrm{CoCl}_{4}\right]$
 $M_{r}=318.95$

Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.9179$ (3) \AA
$b=8.2866$ (3) \AA
$c=13.4395(5) \AA$
$\alpha=72.188$ (3) ${ }^{\circ}$
$\beta=87.292(3)^{\circ}$
$\gamma=69.045(3)^{\circ}$
$V=683.31(5) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& F(000)=326 \\
& D_{\mathrm{x}}=1.550 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 100 \text { reflections } \\
& \theta=10.4-21.8^{\circ} \\
& \mu=2.00 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Block cut from larger crystal, blue } \\
& 0.55 \times 0.44 \times 0.38 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker P4
diffractometer
Radiation source: normal-focus sealed tube graphite

2207 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.055$
$\theta_{\max }=25.0^{\circ}, \theta_{\min }=2.7^{\circ}$

$\theta / 2 \theta$ scans

Absorption correction: integration
(XSHELL; Bruker, 1999)
$T_{\text {min }}=0.378, T_{\max }=0.553$
3003 measured reflections
2361 independent reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.097$
$S=1.08$
2361 reflections
129 parameters
0 restraints
$h=-8 \rightarrow 1$
$k=-9 \rightarrow 9$
$l=-15 \rightarrow 15$
3 standard reflections every 100 reflections
intensity decay: 3.8%

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0551 P)^{2}+0.3622 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.50$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $F_{\mathrm{c}}{ }^{*}=\mathrm{k} F_{\mathrm{c}}\left[1+0.001 \mathrm{x} F_{\mathrm{c}}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor, $w R$, and goodness of fit, S, are based on F^{2}; conventional R-factors, R, are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Co1	$0.08521(5)$	$0.39063(4)$	$0.24591(2)$	$0.03454(18)$	
C11	$-0.07188(15)$	$0.25750(14)$	$0.37896(7)$	$0.0711(3)$	
C12	$0.28898(11)$	$0.16529(9)$	$0.17970(5)$	$0.0440(2)$	
C13	$0.30208(13)$	$0.48322(11)$	$0.31660(6)$	$0.0556(2)$	
C14	$-0.12874(12)$	$0.63518(11)$	$0.12131(7)$	$0.0578(3)$	
N1A	$0.6224(3)$	$0.2465(3)$	$0.02177(19)$	$0.0385(5)$	
H1AD	0.5067	0.2282	0.0497	0.046^{*}	
C1A	$0.7839(5)$	$0.1787(5)$	$0.1090(3)$	$0.0612(9)$	
H1AA	0.8191	0.0502	0.1406	0.092^{*}	
H1AB	0.7315	0.2393	0.1606	0.092^{*}	

H1AC	0.9053	0.2028	0.0823	0.092^{*}
C2A	$0.6891(5)$	$0.1436(4)$	$-0.0545(3)$	$0.0556(8)$
H2AA	0.5776	0.1831	-0.1065	0.083^{*}
H2AB	0.7257	0.0161	-0.0187	0.03^{*}
H2AC	0.8072	0.1654	-0.0878	0.03^{*}
C3A	$0.5641(4)$	$0.4454(4)$	$-0.0337(2)$	$0.0415(6)$
H3AA	0.4861	0.4776	-0.0994	0.050^{*}
H3AB	0.6888	0.4738	-0.0493	0.050^{*}
N1B	$0.3531(4)$	$0.2003(3)$	$0.54857(19)$	$0.0469(6)$
H1BD	0.2985	0.2773	0.4837	0.056^{*}
C1B	$0.5067(8)$	$0.2606(6)$	$0.5827(3)$	$0.0840(13)$
H1BA	0.4372	0.3765	0.5935	0.126^{*}
H1BB	0.6036	0.2716	0.5299	0.126^{*}
H1BC	0.5794	0.1735	0.6471	0.126^{*}
C2B	$0.1808(8)$	$0.2172(9)$	$0.6196(4)$	$0.0998(16)$
H2BA	0.1246	0.3391	0.6233	0.150^{*}
H2BB	0.2324	0.1338	0.6883	0.150^{*}
H2BC	0.0741	0.1893	0.5932	0.150^{*}
C3BA	$0.4254(8)$	$0.0107(5)$	$0.5425(3)$	$0.0415(15)$
H3BA	0.3081	-0.0170	0.5282	0.050^{*}
H3BB	0.4934	-0.0736	0.6085	0.050^{*}
C3BB	$0.542(2)$	$0.0458(19)$	$0.5298(11)$	$0.040(5)$
H3BC	0.6148	-0.0385	0.5948	0.048^{*}
H3BE	0.6355	0.0950	0.4876	0.048^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0331(2)$	$0.0344(3)$	$0.0343(2)$	$-0.01054(16)$	$0.00261(14)$	$-0.01021(16)$
C11	$0.0643(5)$	$0.0794(6)$	$0.0662(5)$	$-0.0350(5)$	$0.0280(4)$	$-0.0102(5)$
C12	$0.0475(4)$	$0.0414(4)$	$0.0432(4)$	$-0.0128(3)$	$0.0093(3)$	$-0.0182(3)$
C13	$0.0701(5)$	$0.0565(5)$	$0.0496(4)$	$-0.0363(4)$	$-0.0092(4)$	$-0.0113(3)$
C14	$0.0473(4)$	$0.0481(4)$	$0.0596(5)$	$-0.0079(3)$	$-0.0117(3)$	$-0.0002(4)$
N1A	$0.0317(10)$	$0.0304(11)$	$0.0541(13)$	$-0.0110(9)$	$0.0104(9)$	$-0.0154(10)$
C1A	$0.0536(19)$	$0.057(2)$	$0.064(2)$	$-0.0098(15)$	$-0.0066(16)$	$-0.0161(16)$
C2A	$0.0516(17)$	$0.0465(17)$	$0.073(2)$	$-0.0108(14)$	$0.0096(15)$	$-0.0338(16)$
C3A	$0.0430(14)$	$0.0333(13)$	$0.0477(15)$	$-0.0120(11)$	$0.0111(12)$	$-0.0149(12)$
N1B	$0.0594(15)$	$0.0358(13)$	$0.0371(12)$	$-0.0050(11)$	$-0.0009(10)$	$-0.0135(10)$
C1B	$0.121(4)$	$0.080(3)$	$0.066(2)$	$-0.061(3)$	$-0.009(2)$	$-0.012(2)$
C2B	$0.088(3)$	$0.145(5)$	$0.083(3)$	$-0.048(3)$	$0.031(3)$	$-0.055(3)$
C3BA	$0.046(3)$	$0.037(2)$	$0.045(2)$	$-0.0160(17)$	$0.0098(18)$	$-0.0166(15)$
C3BB	$0.031(8)$	$0.040(7)$	$0.047(8)$	$-0.009(6)$	$0.012(5)$	$-0.014(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Co} 1-\mathrm{Cl} 1$	$2.2500(8)$
$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.2980(7)$
$\mathrm{Co} 1-\mathrm{Cl} 3$	$2.2686(8)$
$\mathrm{Co} 1-\mathrm{Cl} 4$	$2.2615(8)$

N1B-C1B	$1.469(5)$
N1B-C2B	$1.485(5)$
N1B-C3BA	$1.496(4)$
N1B-C3BB	$1.542(13)$

sup-4

supplementary materials

N1A-C2A	1.483 (4)
N1A-C1A	1.487 (4)
N1A-C3A	1.496 (3)
N1A-H1AD	0.9100
C1A-H1AA	0.9600
C1A-H1AB	0.9600
C1A-H1AC	0.9601
C2A-H2AA	0.9601
C2A-H2AB	0.9600
C2A-H2AC	0.9599
C3A-C3A ${ }^{\text {i }}$	1.509 (5)
C3A-H3AA	0.9700
C3A-H3AB	0.9700
Cl1-Col-Cl4	115.50 (4)
$\mathrm{Cl1}-\mathrm{Co} 1-\mathrm{Cl} 2$	106.29 (4)
$\mathrm{Cl} 1-\mathrm{Co} 1-\mathrm{Cl} 3$	106.99 (4)
Cl2-Co1-Cl3	107.06 (3)
Cl2-Col-Cl4	112.81 (3)
Cl3-Co1-Cl4	107.76 (3)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	111.2 (2)
C1A-N1A-C3A	112.5 (2)
C2A-N1A-C3A	109.8 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AD}$	107.6
C1A-N1A-H1AD	107.7
C3A-N1A-H1AD	107.6
N1A-C1A-H1AA	109.4
N1A-C1A-H1AB	109.5
H1AA - $\mathrm{C}^{\text {A }}$ - H 1 AB	109.5
N1A-C1A-H1AC	109.5
H1AA - C1A-H1AC	109.5
H1AB-C1A-H1AC	109.5
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AA}$	109.4
N1A-C2A-H2AB	109.6
$\mathrm{H} 2 \mathrm{AA}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AB}$	109.5
N1A-C2A-H2AC	109.4
$\mathrm{H} 2 \mathrm{AA}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AC}$	109.5
$\mathrm{H} 2 \mathrm{AB}-\mathrm{C} 2 \mathrm{~A}-\mathrm{H} 2 \mathrm{AC}$	109.5
N1A-C3A-C3A ${ }^{\text {i }}$	110.3 (3)
N1A-C3A-H3AA	109.7
C3A ${ }^{\text {i }}$ - $\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AA}$	109.8
N1A-C3A-H3AB	109.5
C3A ${ }^{\text {i }}$ - $\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{AB}$	109.4
H3AA-C3A-H3AB	108.1
C1B-N1B-C2B	109.6 (3)
C1B-N1B-C3BA	117.8 (3)

N1B-H1BD	0.9100
C1B-H1BA	0.9600
C1B-H1BB	0.9598
C1B-H1BC	0.9599
C2B-H2BA	0.9600
C2B-H2BB	0.9600
C2B-H2BC	0.9600
C3BA-C3BA	$1.510(9)$
C3BA-H3BA	0.9600
C3BA-H3BB	0.9601
C3BB-C3BB	$1.51(3)$
C3BB-H3BC	0.9600
C3BB-H3BE	0.9600
N1B-C2B-H2BA	109.6
N1B-C2B-H2BB	109.4
H2BA-C2B-H2BB	109.5
N1B-C2B-H2BC	109.4
H2BA-C2B-H2BC	109.5
H2BB-C2B-H2BC	109.5
C3BB-C3BA-C3BB	$106.5(14)$
C3BB-C3BA-N1B	$90.9(15)$
C3BB	79.3
C3B	C3BA-N1B

$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BA}$	106.6 (4)	N1B-C3BB-H3BB	89.6
C1B-N1B-C3BB	85.6 (7)	C3BA-C3BB-H3BC	93.1
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}$	137.0 (7)	C3BA ${ }^{\text {ii }}-\mathrm{C} 3 \mathrm{BB}-\mathrm{H} 3 \mathrm{BC}$	115.0
C1B-N1B-H1BD	107.5	C3BB ${ }^{\text {ii }}-\mathrm{C} 3 \mathrm{BB}-\mathrm{H} 3 \mathrm{BC}$	111.4
C2B-N1B-H1BD	107.3	N1B-C3BB-H3BC	111.2
C3BA-N1B-H1BD	107.5	H3BB-C3BB-H3BC	47.0
C3BB-N1B-H1BD	105.5	C3BA-C3BB-H3BE	155.7
N1B-C1B-H1BA	109.4	C3BA ${ }^{\text {ii }}-\mathrm{C} 3 \mathrm{BB}-\mathrm{H} 3 \mathrm{BE}$	71.7
N1B-C1B-H1BB	109.5	C3BB ${ }^{\text {ii }}-\mathrm{C} 3 \mathrm{BB}-\mathrm{H} 3 \mathrm{BE}$	108.8
H1BA-C1B-H1BB	109.5	N1B-C3BB-H3BE	110.1
N1B-C1B-H1BC	109.5	H3BB-C3BB-H3BE	154.5
$\mathrm{H} 1 \mathrm{BA}-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{BC}$	109.5	H3BC-C3BB-H3BE	108.8
$\mathrm{H} 1 \mathrm{BB}-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{BC}$	109.5		
N1A-C3A-C3A ${ }^{\text {i }}-\mathrm{N} 1 \mathrm{~A}^{i}$	180.0	$\mathrm{C} 3 \mathrm{BB}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BA}{ }^{\text {ii }}$	-37.3 (9)
C1A-N1A-C3A-C3A ${ }^{\text {i }}$	-73.0 (4)	$\mathrm{C} 3 \mathrm{BB}^{\text {ii }}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BA}^{\text {ii }}$	0.001 (2)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}^{\mathrm{i}}$	162.5 (3)	N1B-C3BA-C3BB-C3BA ${ }^{\text {ii }}$	-133.5 (9)
N1B-C3BA-C3BA ${ }^{\text {ii }}-\mathrm{N} 1 \mathrm{~B}^{\text {ii }}$	180.0	N1B-C3BA-C3BB-C3BB ${ }^{\text {ii }}$	-133.5 (9)
$\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BB}{ }^{\text {ii }}-\mathrm{N} 1 \mathrm{~B}^{\mathrm{ii}}$	180.0	C3BA ${ }^{\text {ii }}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BB}^{\text {ii }}$	-0.001 (2)
C1B-N1B-C3BA-C3BA ${ }^{\text {ii }}$	-66.5 (5)	$\mathrm{C} 3 \mathrm{BB}^{\mathrm{ii}}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}-\mathrm{N} 1 \mathrm{~B}$	133.5 (9)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BB}^{\text {ii }}$	-169.3 (14)	C3BA ${ }^{\text {ii }}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}-\mathrm{N} 1 \mathrm{~B}$	133.5 (9)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BA}{ }^{\text {ii }}$	170.0 (4)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BA}$	154.4 (8)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BB}^{\text {ii }}$	76.5 (15)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BA}$	40.2 (13)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}$	-29.1 (9)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BA}{ }^{\text {ii }}$	-134.0 (19)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}$	-152.7 (9)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BA}{ }^{\text {ii }}$	111.8 (16)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}^{\text {ii }}$	-105.0 (15)	$\mathrm{C} 3 \mathrm{BA}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BA}^{\text {ii }}$	72 (2)
$\mathrm{C} 2 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}^{\text {ii }}$	131.5 (15)	$\mathrm{C} 3 \mathrm{BA}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BB}-\mathrm{C} 3 \mathrm{BB}^{\text {ii }}$	36.3 (11)
$\mathrm{C} 3 \mathrm{BB}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{BA}-\mathrm{C} 3 \mathrm{BB}^{\text {ii }}$	-75.8 (19)		
Symmetry codes: (i) $-x+1,-y+1,-z$; (ii) $-x+1,-y,-z+1$.			

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{AD} \cdots \mathrm{Cl} 2$	0.91	2.31	$3.170(2)$	157
$\mathrm{~N} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{BD} \cdots \mathrm{Cl} 3$	0.91	2.37	$3.222(3)$	155

supplementary materials

Fig. 1

